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Abstract

Timely detection and understanding of causes for population decline are essential for effec-
tive wildlife management and conservation. Assessing trends in population size has been
the standard approach, but we propose that monitoring population health could prove
more effective. We collated data from 7 bottlenose dolphin (Tursiops truncatus) populations
in the southeastern United States to develop a method for estimating survival probabil-
ity based on a suite of health measures identified by experts as indices for inflammatory,
metabolic, pulmonary, and neuroendocrine systems. We used logistic regression to imple-
ment the veterinary expert system for outcome prediction (VESOP) within a Bayesian
analysis framework. We fitted parameters with records from 5 of the sites that had a
robust network of responders to marine mammal strandings and frequent photographic
identification surveys that documented definitive survival outcomes. We also conducted
capture–mark–recapture (CMR) analyses of photographic identification data to obtain sep-
arate estimates of population survival rates for comparison with VESOP survival estimates.
The VESOP analyses showed that multiple measures of health, particularly markers of
inflammation, were predictive of 1- and 2-year individual survival. The highest mortal-
ity risk 1 year following health assessment related to low alkaline phosphatase (odds ratio
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[OR] = 10.2 [95% CI: 3.41–26.8]), whereas 2-year mortality was most influenced by ele-
vated globulin (OR = 9.60 [95% CI: 3.88–22.4]); both are markers of inflammation. The
VESOP model predicted population-level survival rates that correlated with estimated
survival rates from CMR analyses for the same populations (1-year Pearson’s r = 0.99,
p = 1.52 × 10–5; 2-year r = 0.94, p = 0.001). Although our proposed approach will not
detect acute mortality threats that are largely independent of animal health, such as harm-
ful algal blooms, it can be used to detect chronic health conditions that increase mortality
risk. Random sampling of the population is important and advancement in remote sam-
pling methods could facilitate more random selection of subjects, obtainment of larger
sample sizes, and extension of the approach to other wildlife species.
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Un sistema basado en conocimiento experto para predecir la tasa de supervivencia a partir
de datos de salud
Resumen: La detección y el entendimiento oportunos de la declinación poblacional son
esenciales para que el manejo y la conservación de fauna tengan efectividad. La evaluación
de las tendencias en el tamaño poblacional ha sido la estrategia estándar, pero proponemos
que el monitoreo de la salud poblacional podría ser más efectivo. Recopilamos datos de
siete poblaciones de delfines (Tursiops truncatus) en el sureste de Estados Unidos para
desarrollar un método de estimación de la probabilidad de supervivencia con base en un
conjunto de medidas sanitarias identificadas por expertos como índices para los sistemas
inflamatorio, metabólico, pulmonar y neuroendocrino. Usamos la regresión logística para
implementar el sistema de expertos veterinarios para la predicción de resultados (SEVPR)
en un análisis bayesiano. Ajustamos los parámetros con los registros de cinco sitios que
contaban con una buena red de respondientes a los varamientos de mamíferos marinos y
censos de identificación fotográfica (foto-ID) que documentaron los resultados de super-
vivencia definitivos. También realizamos análisis de marcaje-recaptura (MR) en los datos
de identificación fotográfica para obtener estimados separados de las tasas de superviven-
cia poblacional para compararlos con los estimados del SEVPR. Los análisis del SEVPR
mostraron que varias medidas sanitarias, particularmente los marcadores de inflamación
son buenos predictores de la supervivencia individual para uno y dos años. El riesgo de
mortalidad más alto un año después de la valoración sanitaria se relacionó con una fosfa-
tasa alcalina baja (cociente de probabilidades de 10.2 [95% CI 3.41-26.8]), mientras que la
mortalidad a los dos años estuvo más influenciada por una globulina elevada (9.60 [95%
CI 3.88-22.4]); ambas son marcadores de la inflamación. El modelo del SEVPR predijo
las tasas de supervivencia a nivel poblacional en correlación con las tasas estimadas de
supervivencia de los análisis de MR para las mismas poblaciones (Pearson de un año r =

0.99, p = 1.52e-05; dos años r = 0.94, p = 0.001). Aunque nuestra propuesta no detecta las
amenazas agudas de mortalidad que en su mayoría son independientes de la salud animal,
como la proliferación de algas nocivas, puede usarse para detectar las condiciones crónicas
de salud que incrementan el riesgo de mortalidad. Es importante el muestreo aleatorio de la
población y los avances en los métodos de muestreo remoto podrían facilitar una selección
más aleatoria de los sujetos, la obtención de muestras de mayor tamaño y la expansión de
la estrategia a otras especies de fauna.

PALABRAS CLAVE

biomarcadores, delfín, monitoreo de fauna, supervivencia, tasa de vitalidad, valoración sanitaria

INTRODUCTION

Effective wildlife management and conservation requires timely
detection of changes in population status, typically measured as

population size, and an understanding of the factors contribut-
ing to those changes. However, the number of individuals in a
population is often difficult to measure, particularly for species
that spend the majority of their lives out of human view. The
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resulting lack of precision in estimates of population size and
the need for repeated estimates over time can make it difficult to
detect trends in a timely manner for all but the most precipitous
declines (Jewell et al., 2012). Even when a decline is detected,
the cause or contributing factors are generally not apparent,
which hinders identification of effective management actions.
Examining population vital rates (e.g., survival or fecundity),
either to detect changes over time or to compare spatially across
populations, may be a more sensitive method for assessing pop-
ulation status and trends. However, because of the difficulty
in observing life-history events (e.g., births, deaths) for some
species (Moore et al., 2020), obtaining robust estimates of vital
rates may also require multiple years of monitoring effort, par-
ticularly for long-lived species that are slow to reproduce. In
addition, direct monitoring of vital rates may not be informative
of underlying causes when a decrease occurs.

Population health may provide an early warning of emerging
issues prior to observable changes in vital rates. The impor-
tance of conservation medicine (i.e., integrating health into
wildlife monitoring for responsive conservation efforts) has
long been recognized (Deem et al., 2001). However, using health
as a quantitative monitoring tool requires understanding of
the link between a given health measureand population vital
rates. Although few would question that health status affects an
individual’s chances of survival, defining the quantitative links
between 1 or more health measures and survival probability is
difficult, particularly if health status is measured at a single point
in time. Studies of human subjects have had some success at
identifying physiological measures that, taken at a single time
point, are predictive of morbidity or mortality years into the
future. Many of these measures focus on neuroendocrine dys-
regulation and resultant disruption of inflammatory, metabolic,
cardiovascular, or pulmonary systems, collectively referred to as
allostatic load (AL) (Beckie, 2012). Using multiple indices from
these physiological systems and combining them into 1 or more
indices of AL, researchers have identified links with numerous
adverse health outcomes (reviewed by Beckie [2012]), includ-
ing higher all-cause mortality (Castagne et al., 2018; Robertson
et al., 2017). Similarly, Edes et al. (2018) demonstrated an associ-
ation of AL indices with morbidity and mortality risk in western
lowland gorillas (Gorilla gorilla gorilla) under human care and pro-
posed that AL indices could be a predictive tool for wildlife
populations.

Of wildlife species, cetaceans are particularly challenging to
monitor. Except for surfacing to breathe, cetaceans spend their
lives underwater and out of human view. This, along with the
fact that cetaceans are generally long-lived, makes it particularly
challenging to estimate vital rates or monitor trends in popula-
tions. Even in the limited cases of some nearshore populations,
where trends in abundance or vital rates have been documented,
understanding of the mechanism underlying adverse trends is
often lacking. Understanding health, and in particular what
components of health are compromised, could provide that
mechanistic link and help point to potential solutions. There-
fore, cetaceans are an exemplar of how incorporating health
into monitoring could support more effective management and
conservation.

Bottlenose dolphins (Tursiops truncatus), hereafter referred to
as dolphins, are considered a model species for understanding
cetacean health due to the medical advances that have been
made with populations under human care (Venn-Watson et al.,
2011) and the breadth of health studies on free-ranging pop-
ulations (Barratclough et al., 2019). A multidecade study of
dolphin populations in Sarasota Bay, Florida, and other multi-
year studies of populations in the Indian River Lagoon, Florida,
and near Charleston, South Carolina, have contributed to a
robust understanding of the physiology, environmental expo-
sures, and endemic disease in free-ranging populations (Bossart
et al., 2017; Reif et al., 2017; Wells et al., 2004). Targeted health
assessments for other populations have also been conducted in
response to specific events, such as unusual mortality events
(UMEs), and hazardous chemical releases (Schwacke et al.,
2010, 2012, 2014).

We developed the veterinary expert system for outcome
prediction (VESOP), a quantitative model that links dolphin
health data with individual mortality risk and population-level
survival rates (Figure 1). We synthesized data collected dur-
ing previous health assessment studies, follow-up photographic
monitoring studies, and stranding response efforts for 7 dol-
phin populations in the southeastern United States. Relying
on knowledge from a panel of veterinary experts, we inte-
grated health measures from blood, physical examination, and
pulmonary ultrasound into indices and hypothesized that 1
or more of the indices is predictive of individual survival.
The indices include some of the same physiological measures
used in human and managed primate AL indices, but also
include measures identified as important from cetacean vet-
erinary research or prior dolphin health assessment studies.
Because our ultimate goal was the prediction of population
vital rates, we computed the average VESOP survival proba-
bility for individuals that were sampled for health metrics in
each population. We then compared these VESOP population-
level survival rates with survival rates for the same population
and period estimated through capture–mark–recapture (CMR)
to test the hypothesis that rates between the 2 methods are
correlated.

METHODS

Health data

We collated records from prior dolphin catch-and-release health
assessment studies across 7 locations (Figure 2; Appendix S1).
A standard suite of health measures was collected across studies:
complete blood count, serum chemistry, serum cortisol, thyroid
hormones, length, weight, and maximum girth. Samples from
all studies were sent to the Cornell Animal Health Diagnostic
Center (Ithaca, New York) for laboratory analyses to support
comparability of data across studies and over time. Pulmonary
ultrasound was added as part of the standard assessment pro-
cess beginning in 2010 (Schwacke et al., 2014; Smith et al., 2017).
Sampling methods and health data from the various studies
have been reported (Balmer et al., 2018; Bossart et al., 2017;
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FIGURE 1 Overview of analytical approach for fitting coefficients for model parameters and application of the veterinary expert system for outcome
prediction (VESOP) model. Health data are predictors; stranding and photographic identification (photo-ID) data provide observed outcomes and input for
capture–mark–recapture models to estimate survival outcome for unknown fates. The fitted model can be applied for a new population (Popj) to estimate an annual
survival rate.

FIGURE 2 Bay, sound, and estuary stocks of bottlenose dolphins from which health data were obtained (boxes).
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TABLE 1 Indices and criteria developed in consultation with the expert Veterinary Advisory Panel to classify cases of dolphin health abnormalities.

Physiological

system Index Classification criteria

Inflammatory Neutrophilia Neutrophil count (thousand/µL) at or above 95th percentile: 7.3 (all age classes)

Low albumin Albumin (g/dL) at or below 5th percentile: 4.09 × e−0.00018 × length or 3.9 (adult), 4.0
(subadult), 4.1 (calf)

High globulin Globulin (g/dL) at or above 95th percentile: 1.569 × e−0.00393 × length or 4.4 (adult),
3.5 (subadult), 3.0 (calf)

Low alkaline phosphatase (ALP) Alkaline phosphatase (µ/L) at or below 5th percentile: 1101.6 × e−0.1141 × length or
60.95 (adult), 119 (subadult), 185.5 (calf)

Anemia Hemoglobin (g/dL) at or below 5th percentile: 11.5 (adult female), 12.8 (calf,
subadult, and adult male)

Metabolic Low body mass index (BMI) Mass (kg):length (cm) ratio at or below 5th percentile: mass ≤ 10–4.738 × length2.889

(female), mass ≤ 10–5.366 × length3.156 (male)
Maximum girth (cm):length (cm) ratio used if weight was not obtained:
max girth ≤ 1021.87 + 0.3981 × length (female),
max girth ≤ 10–0.7432 + 0.4963 × length (female)

Low cholesterol Serum cholesterol (mg/dL) at or below 5th percentile: 171.03 × e−0.00175 × length or
109 (adult), 117 (subadult), 142.8 (calf)

Hypoglycemia Serum glucose (mg/dL) at or below 5th percentile: 105.3 × e−0.00156 × length or 70.0
(adult), 75.6 (subadult), 80.9 (calf)

Pulmonary Lung disease Moderate or severe lung disease as diagnosed via ultrasound

Neuroendocrine Low cortisol Serum cortisol (µg/dL) sampled postcapture at or below 5th percentile: 0.97 (all age
classes)

Low total triiodothyronine
(total T3)

Serum total T3 (ng/dL) at or below 5th percentile: 1.46 × e−0.00273 × length or 0.73
(adult), 0.87 (subadult), 0.84 (calf)

Reif et al., 2017; Schwacke et al., 2010, 2012; Smith et al., 2017)
(additional details in Appendix S1).

The prior health assessment fieldwork was conducted under
U.S. National Marine Fisheries Service scientific research per-
mits 18786, 18986, 522–1785, 15543, 998–1678, and 14352.
Protocols were approved by the Mote Marine Laboratory (Sara-
sota, Florida), Florida Atlantic University (Indian River Lagoon,
Florida, and Charleston, South Carolina), or National Oceanic
and Atmospheric Administration (all other health assessments)
Institutional Animal Care and Use Committees.

We convened an expert veterinary advisory panel (VAP) that
included 4 veterinary clinicians with extensive marine mammal
experience and 3 additional veterinary researchers with specific
expertise in toxicology, immunology, and infectious disease. We
met with the VAP to review health indices previously described
by Schwacke et al. (2014) and asked for their input on poten-
tial refinements for classification criteria; the diagnostic value
of each index and how it might relate to pathways for disease;
and identification of indices or other measures that would be
most predictive of 1- to 2-year survival outcome. Through these
discussions, we defined classification criteria for a final set of
indices, organized by physiological system (Table 1; Figure 1).

For each index, we calculated the 5th percentile of measure-
ments to provide a threshold for classifying cases. For some
measurements, the threshold was defined as the 95th percentile,
and for others the threshold was defined as the 5th percentile.
For example, inflammation may be indicated by low values of
alkaline phosphatase, but for serum globulins, which are anti-

bodies, elevated values are of concern. For indices expected to
vary with age, we used nonlinear quantile regression via the
quantreg package in R (R Development Core Team, 2022) to
estimate threshold as a function of length (Table 1). There
were 18 records for which length was not recorded; there-
fore, we also estimated thresholds stratified by age class or
sex to apply when length was missing. Additional details are
in Appendix S3.

We applied the thresholds to evaluate cases for each health
index and then estimated the prevalence of cases for each pop-
ulation. To visualize the differences in prevalence across the
multiple sites, we used the R heatmap function with hierarchical
clustering.

Photographic identification data

We collated data from photographic identification (photo-ID)
studies across the same 7 locations to determine whether sam-
pled dolphins were resighted following their health assessment.
Different photo-ID research teams using similar survey meth-
ods, all previously described (Appendix S1), conducted surveys
at the various sites. Using photo-ID data and working with
members of the Southeast U.S. Marine Mammal Stranding
Network, we examined 1-year survival from the time of the
health assessment for each of the dolphins sampled. Dolphins
documented via photo-ID as alive 1 year or more after sam-
pling were assigned a 1. If there was strong evidence that the
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dolphin had died during the follow-up period (i.e., the carcass
was recovered or the dolphin was monitored by researchers
through a period of deteriorating condition until death was
imminent), then the dolphin was assigned a 0. We used the same
process to assign values for 2-year survival. For some individu-
als, survival outcome could not be determined (unknown fate)
(i.e., a carcass was not recovered but the dolphin was also not
observed alive after the 1- or 2-year follow-up period).

CMR analyses

Using available photo-ID data collected over multiple years,
including years in which health assessments were conducted,
we performed site-specific CMR analyses to estimate individual
survival probability for health-assessed dolphins with unknown
fate and to obtain separate estimates of population survival
rate from photo-ID data for comparison with VESOP survival
estimates.

We developed CMR models for 3 genetically distinct popula-
tions (Hayes et al., 2022): Indian River Lagoon (IRL), Southern
Georgia Estuarine System (SGE), and St. Joseph Bay (SJB)
(Figure 2). For each population, we established a set of candi-
date models for survival and capture probability that included
explanatory variables relating to time, season, geographic stra-
tum, survey method, and survey effort as appropriate. Animals
vary in the distinctiveness of the fin markings used to identify
them; we used data only from individuals classified as being
of average or high distinctiveness. We accounted for the pos-
sibility of nonresident (i.e., transient) individuals by truncating
all individuals’ first captures (SJB), analyzing data only from a
core study area (SGE), or including in our candidate set mod-
els that allowed estimated survival to differ in the first period
after capture (a transience effect) compared with subsequent
time periods (IRL). We used maximum likelihood to fit all can-
didate models and selected the most parsimonious model for
each population with small-sample Akaike information criterion
as the model selection criterion. Analyses were undertaken with
program MARK 9.0 (White & Burnham, 1999) and accessed
via the RMark package in R (R Development Core Team, 2022).
Additional details are in Appendix S4.

For 3 of the remaining populations, we used previously
published survival estimates covering the required periods
because no significant data collection efforts have taken place
since these publications: Charleston Estuarine System (CES)
(Speakman et al., 2010), Barataria Bay Estuarine System (BBE)
(Glennie et al., 2021), and Sarasota Bay (SAR) (Lacy et al.,
2021) (Figure 2). For the Mississippi Sound population (MSS)
(Figure 2), there were insufficient photo-ID data available to
conduct a CMR analysis for the years immediately following
health assessments.

To estimate individual survival probability for each dolphin
with an unknown fate, we used its sighting history together with
the estimated capture and survival probabilities from the rele-
vant CMR model to estimate 1- and 2-year survival probability
after health assessment. This was achieved using custom-written

R code (implementing an adaption of the forward–backward
algorithm treating the CMR model as a special case of a hidden
Markov model [Zucchini et al., 2016]). Uncertainty was quanti-
fied using parametric bootstrapping. To capture this uncertainty
in the form of a parametric distribution that could be input into
the VESOP modeling, we fitted via maximum likelihood beta
distributions to the parametric bootstrap resamples for each
animal. Additional details are in Appendix S5.

The fitted or literature-derived models for each site were
also used to meet our second objective, which was to obtain
estimates of population survival 1 and 2 years after each
health assessment. Again, parametric bootstrapping was used to
quantify uncertainty on these estimates (Appendix S5).

VESOP framework

We investigated models for predicting survival outcome from
health indices using logistic regression within a Bayesian analysis
framework. The Bayesian framework allowed us to use incom-
plete health records (i.e., records missing values for 1 or more
predictor variables) for fitting the model via data augmenta-
tion and allowed inclusion of individuals with known outcomes
(survival or death) and those with unknown fates by specify-
ing probability distributions on the survival of unknown fate
individuals derived from CMR analyses.

We let pi be the survival probability of dolphin i, i = 1, … ,N ,
from sampling location l (i ), and modeled this with the linear
predictor:

logit
(

pi

)
= 𝛼l (i ) +

J∑
j=1

𝛽 j fi, j , (1)

where 𝛼l is the baseline survival rate at location l , 𝛽 j is the addi-
tive contribution to survival rate of the j th health index, and fi, j
is the value (1 or 0) of the j th health index for animal i.

We let the animals be ordered such that the first K animals
are of known fate, where survival outcome, si , is known to be
either alive (1) or dead (0). For these animals, we modeled each
survival outcome as an independent Bernoulli random variable
si ∼ Bernoulli(pi ), which gives the likelihood component:

K =

K∏
i=1

{
p

si
i

[
1 − pi

][1−si ]
}
. (2)

The remaining U = N − K animals were of unknown fate.
For these animals, although we did not have a definite survival
outcome, we did have information from the CMR study about
their probability of survival. We represented this information
in the form of a beta probability density function on survival
probability qi , which we denoted f (qi ) (this is a function of 2
parameters of the beta distribution, which are assumed known
for each unknown fate animal). To form the likelihood for the
unknown fate animals, we summed over both possible survival
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outcomes and integrated over all possible values of q:

U =

N∏
i=K+1

1

∫
qi=0

{
f
(
qi

) 1∑
s=0

Pr
(
S = s|qi

) [
ps

i

(
1 − pi

)(1−s)]}
dqi ,

=

N∏
i=K+1

1

∫
qi=0

{
f
(
qi

) [
qi pi +

(
1 − qi

) (
1 − pi

)]}
dqi , (3)

where Pr (S = s|qi ) is the probability the survival outcome is
s given the value of qi , which is equal to qi when S = 1 and
(1 − qi ) when S = 0.

We implemented the model in R (R Development Core
Team, 2022) with rjags 4–9 (Plummer, 2013); the integration
and the sum in Equation (3) were computed within the Markov
chain Monte Carlo sampler. For all analyses, 4 chains were sam-
pled through an adaption phase of 200 samples and a burn-in
period of 5000 samples. After the burn-in phase, 1000 samples
(10,000 samples thinned by 10) from the posterior distribu-
tion were collected. Trace and density plots were used to assess
convergence. Summary statistics were compared across the 4
chains to ensure consistency and then combined to provide
4000 samples from the posterior distribution. Additional details,
including description of Bayesian prior parameter distributions,
are in Appendix S6.

Data and code are publicly available through Dryad (https://
doi.org/10.5061/dryad.h18931zqt).

VESOP model fitting and analyses

We used a subset of the dolphin health records to estimate
coefficient values for the VESOP model parameters. For this
model fitting, we selected study sites that had a robust net-
work of responders for stranded marine mammals and relatively
frequent (i.e., monthly or at least seasonal) photo-ID surveys
conducted for the 2 years following health assessment sampling
in order to minimize the potential bias that can be introduced
by missing outcomes when missing outcomes are not ran-
dom. Detection probability for dolphin mortalities (negative
outcomes) is generally low. Wells et al. (2015) estimate that only
33% of resident SAR dolphin carcasses are recovered, and this
likely represents an upper bound for the achievable detection
rate due to the high human population density and shoreline
accessibility near Sarasota, Florida. Conversely, detection of pos-
itive survival outcomes may be quite high, depending on the
number and length of time that follow-up photo-ID surveys
are conducted. For example, if photo-ID surveys are conducted
for several years after health assessment, this provides many
opportunities to observe the dolphin alive.

We used CMR analysis to estimate survival probability for
unknown fate dolphins, but the precision of estimates depended
on the degree of photo-ID effort for the given area and the
length of time after health assessments surveys were conducted,
which varied across study sites. This disparity in detection of
positive versus negative outcomes had the potential to cause
bias in estimation of survival rates when fitting the VESOP
model. Given this, we selected the following sites with robust

stranding response and photo-ID follow-up for inclusion in the
data set for fitting model parameters: SAR, IRL, CHS, and SJB.
We also included 2011 health records for BBE as part of the data
set. Data for BBE 2013 and later were not included because sys-
tematic photo-ID surveys and support for stranding response in
Louisiana were discontinued in 2014 when the Deepwater Horizon

(DWH) Natural Resource Damage Assessment (NRDA) ended.
The last NRDA photo-ID survey was in early 2014, and only 1
systematic photo-ID survey has been conducted since (in 2019).

We conducted preliminary analyses to examine the predictive
potential for each index. For each of the 11 indices, we fitted
the VESOP model including only that index. Samples from the
posterior distribution for 𝛽 were used to compute an odds ratio
(OR) of 1- and 2-year mortality with 95% credible intervals. We
considered an index significantly related to mortality when the
credible interval for the OR excluded 1.

We then included all of the health indices simultaneously in
the VESOP model to examine predictive potential for the com-
bined indices. Following inference of the model parameters,
we computed posterior predictive estimates of population-level
survival probabilities. For dolphins from sites that were included
in the model fitting, we used survival estimates from the poste-
rior distribution. To compute a survival probability for dolphins
that were not included in the model fitting, we applied Equa-
tion (1) with estimates for the coefficient for each health index
(𝛽 j ) from the posterior distribution. For this computation, we
selected 𝛼l randomly by drawing with equal likelihood from the
sites in the training set, excluding SJB. We excluded SJB because
samples from this site were collected during a UME (Schwacke
et al., 2010); therefore, we did not consider the underlying mor-
tality rate to be representative of baseline (Appendix S6). After
computing the survival estimate for each individual dolphin,
we computed population-level mean and credible interval for
each site from the combined survivals of all dolphins from
that site.

To compare VESOP and CMR results, we computed the
Pearson correlation coefficient for the mean population survival
for the same period estimated from the 2 models.

For dolphins sampled during the health assessments at each
site, individual survival outcomes were either observed or, for
unknown fates, estimated from the CMR individual survival
probability analysis. We also computed the mean estimated sur-
vival for dolphins that were sampled during health assessments
and compared this survival estimate with CMR model estimates
for the broader population. This comparison, which was based
solely on dolphin sightings and CMR analyses without consid-
eration of health data, was of interest to determine whether
dolphins selected for health assessment have a survival rate
similar to the overall population.

RESULTS

We obtained 812 dolphin health records from across the 7 study
sites. We excluded records for dolphins that were known to be
nonresidents, based either on sighting history (n = 3) or on
radio or satellite-linked tagging data (n = 4). Of the remaining

https://doi.org/10.5061/dryad.h18931zqt
https://doi.org/10.5061/dryad.h18931zqt
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FIGURE 3 Prevalence of health abnormalities (rows) in 7 populations of bottlenose dolphins (columns), with hierarchical clustering of rows and columns
(blue, lowest prevalence; orange, highest prevalence; scale on left, map for estimating prevalence; population abbreviations defined in Figure 1; health parameter
abbreviations defined in Table 1).

805 records (Appendix S2), we confirmed 1-year survival for
692 individuals and 2-year survival for 649 individuals following
their health assessment; 23 and 35 were confirmed mortali-
ties within 1 and 2 years, respectively. Sufficient photo-ID data
were available to estimate a probability of survival from the
CMR analysis for an additional 53 (1 year) and 46 (2 years) dol-
phins. Survival estimates for the remaining animals could not be
obtained because there were no photo-ID surveys more than 1
or 2 years after their health assessment date, so survival esti-
mation would have involved an extrapolation in time. Health
records were relatively complete (Appendix S2), with the excep-
tion of lung scores, which were completely missing for 3 sites
(SJB, IRL, CES), and cholesterol, which was not measured in
some years in IRL and CES.

Abnormal health indices were most prevalent in dolphins
sampled from the BBE and MSS, and these 2 sites clustered
together in the hierarchical clustering dendrogram (Figure 3,
column clusters). The SGE also had a high prevalence of abnor-
malities and clustered separately from the remaining sites in the
second clade. On the opposing axis (Figure 3, rows), inflam-
matory health indices (high globulin, low albumin, low alkaline
phosphatase [ALP], and neutrophilia) clustered together, as did
low cholesterol and low body mass index (BMI), both metabolic
indicators.

At all 3 sites for which CMR models were developed, survival
probability was estimated to vary over time. It increased at SJB
as a logit-linear function of time from 0.76 in 2005 to 0.99 in
2013 (Appendix S4), increased at SGE as a logit-linear function
of time from 0.83 in 2008 to 0.92 in 2019 (Appendix S4), and
fluctuated as a smooth function of time at IRL from 0.90 in
2003 to 0.94 in 2007 and 0.92 in 2016 (Appendix S4).

When health indices were analyzed separately, odds of both
1- and 2-year mortality increased for dolphins with any of the
indices, with the exception of low BMI, low total triiodothyro-

nine (T3), and hypoglycemia (Figure 4a,b). The highest 1-year
mortality risk was for low ALP with an OR of 10.2 (95% CI:
3.41–26.8), whereas 2-year mortality risk was most influenced by
elevated globulin (9.60 [3.88–22.4]), low ALP (8.80 [3.16–22.4]),
and anemia (8.31 [3.14–20.3]). Pairwise comparison of 1-year
ORs showed a high degree of association among the various
indices (Appendix S1).

When all parameters were included simultaneously in the
VESOP logistic regression for 1-year mortality, low ALP was
still most influential (Figure 4c). All other indices, with the
exception of hypoglycemia, had ORs >1 but wide 95% CIs that
did not exclude 1. For 2-year mortality, high globulin and low
cortisol had the greatest influence (Figure 4d).

Posterior baseline survivals (i.e., expected survival for a
healthy dolphin) were similar across the sites: CES, 0.99 (95%
CI: 0.97–0.99); IRL, 0.98 (0.95–0.99); SAR, 0.98 (0.97–0.99);
BBE in 2011, 0.98 (0.94–0.99). The exception was SJB, for
which baseline survival was much lower and credible intervals
were broad (0.92 [0.78–0.98]).

Overall population survival estimated from the VESOP
model, which incorporated both baseline and health index
effects, varied across the 7 sites (Figure 5). The highest survival
estimates were for CES (OR = 0.96 [95% CI: 0.93–0.98]) and
SAR (0.96 [0.94–0.98]), followed by IRL (0.94 [0.91–0.97]) and
MSS (0.94 [0.87–0.98]). The lowest estimates were for SJB (0.88
[0.74–0.97]), SGE (0.89 [0.79–0.96]), and BBE in 2011 (0.91
[0.83–0.97]) and 2013–2018 (0.91 [0.83–0.96]).

We found significant correlation between estimates from the
VESOP model and the CMR models (1 year: Pearson’s r = 0.99
[95% CI: 0.94–0.99], p = 1.52 × 10–5; 2 year: r = 0.94 [0.66–
0.99], p = 0.001), but CMR estimates were consistently lower
(Figure 5; Appendix S2). We found a similar pattern between
CMR model estimates and mean survival for the dolphins sam-
pled for health assessment at each site (Figure 5); correlation
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FIGURE 4 Estimated odds of mortality (a) within 1 and (b) 2 years for dolphins with a given abnormality versus those without derived from the veterinary
expert system for outcome prediction (VESOP) analysis with 1 predictor and within (c) 1 and (d) 2 years derived from the VESOP analysis with all variables
included (blue squares, median; gray lines, 95% credible intervals; vertical red line, equal odds; health parameter abbreviations defined in Table 1).

was high but CMR estimates were lower (Pearson’s r = 0.92
[0.53–0.99], p = 0.004).

DISCUSSION

Using a well-studied cetacean species for which hands-on health
assessments are possible, we demonstrated that health data,

particularly inflammatory indices, are strongly predictive of indi-
vidual survival. Furthermore, we showed that these indices can
be combined to estimate survival rate for the sampled popu-
lation. This presents a promising new approach for estimating
population vital rates in cetaceans and other species for which
deaths cannot readily be observed.

At the individual level, we found a higher risk of mor-
tality associated with the majority of health indices when
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FIGURE 5 Estimated 1-year survival probability of dolphins for each
sampled population (population abbreviations defined in Figure 1; squares,
veterinary expert system for outcome prediction [VESOP] model estimates;
colors, differentiate populations from which health data were obtained for
varying purposes; green, basic biological or health research; red squares,
hazardous waste release investigations; yellow, investigations of unusual
mortality events; circles, proportion of dolphins sampled during health
assessments that survived 1 year; triangles, population survival estimated from
capture–mark–recapture [CMR] analyses; lines, 95% CIs for CMR survival
estimates and VESOP model estimates).

analyzed separately as a single predictor. However, only low
ALP remained strongly influential for 1-year mortality when
all indices were combined in the VESOP model. In cetaceans,
marked decrease in ALP is considered a strong negative prog-
nostic indicator (Nollens et al., 2018), which was supported
by our findings of an over 10-fold increased odds of dying
within a year for dolphins with low ALP. Decline in ALP can
occur during viral or bacterial infection; degree of decline cor-
responds with the severity of infection (Fothergill et al., 1991).
However, the decrease may occur quite rapidly as disease pro-
gresses (Fothergill et al., 1991); therefore, low levels, particularly
as extreme as the 5th percentile threshold we applied, may not
be seen until a few weeks or months prior to death. All dolphins
with low ALP that were later confirmed dead were lost within
the first year, suggesting that ALP is a better measure of imme-
diate (within 1 year) versus longer term survival. High serum
globulin, also an indicator of inflammation, was a strong predic-
tor of 2-year mortality, consistent with a human study showing
increased all-cause mortality over a 5-year period in association
with elevated globulin values (Juraschek et al., 2015).

The reduced importance of other inflammatory markers in
the full VESOP model (i.e., with all indices included) versus
the analysis with each index treated separately was likely due
to the strong association among indices. For example, anemia
was strongly associated with both low ALP and high globulin
(p < 0.0001 for both) (Appendix S1). Although the univari-
ate odds of 1-year mortality for dolphins with anemia was
high (OR = 5.7 [95% CI: 1.8–16]), it became much less sig-
nificant (1.6 [0.35–6.1]) when all indices were included in the
model. A similar shift in importance was seen with neutrophilia,
which was also strongly associated with low ALP and high
globulin. However, the lesser influence of the multiple-index

VESOP model does not discount the potential utility of the
other indices.

In future applications, it may not be practical to measure the
full suite of indices, and some indices may be more feasible
to collect than others in logistically challenging field situations.
For example, although a serum chemistry panel (including albu-
min, globulin, glucose, and ALP) requires 2 mL of separated
serum, diagnostic markers of anemia can be measured from a
very small amount of blood with a portable point-of-care sys-
tem, and white blood cell counts (including neutrophils) can be
estimated from a blood smear. For cetacean species for which
hands-on blood collection is currently infeasible, researchers are
pursuing analytical methods to measure cholesterol and total
T3 in blubber, which can be remotely sampled. Therefore, our
findings of some redundancy of information in the diagnos-
tic indices are encouraging, suggesting that a limited suite can
still be informative even when all measurements cannot be col-
lected. Furthermore, exploration of other health indices could
help identify alternative measures that are more applicable for
predicting longer term survival. We were only able to look as
far as 2-year survival due to data limitations in several of the
sampling sites, but studies in humans show AL indices that are
predictive of mortality over a decade or more (Castagne et al.,
2018). In fact, 1 study showed an AL index that was not pre-
dictive of 5-year mortality, but was predictive of longer term
(10-year) mortality (Robertson et al., 2017). Future studies with
longer follow-up periods (i.e., including photo-ID surveys and
stranding response) could help elucidate other health indices
that supplement the VESOP suite and may be more sensitive
for less severe or emerging population health issues.

At the population level, the VESOP model predicted survival
rates that varied across the 7 sites, with the highest estimates
for SAR and CES (both 0.96), followed by IRL and MSS (both
0.94), and the lowest estimates for SJB, SGE, and BBE (mean
survival 0.91 or lower). This is consistent with what we know
about the sites, in that SAR and CES are considered healthy
populations that are stable or increasing in size (Lacy et al.,
2021; Speakman et al., 2010) and have previously been used
as reference populations for establishing physiological baselines
(Hart et al., 2013, 2015; Schwacke et al., 2009) and for compari-
son with other potentially compromised populations (Schwacke
et al., 2010, 2012, 2014; Twiner et al., 2012).

Conversely, the populations with the lowest estimated sur-
vival were under study due to concern about health effects
from hazardous chemical exposure. Sampling in SGE was con-
ducted to investigate potential adverse effects of exposure
to extremely high levels of polychlorinated biphenyls (PCBs)
(Balmer et al., 2011). Although exposure to PCBs and other per-
sistent organochlorine pollutants has been reported for many
dolphin populations along the southeast U.S. coast, PCB con-
centrations measured in SGE dolphins are 4- to 10-fold higher
than other populations (Kucklick et al., 2011). Sampling in BBE,
and later in MSS, was conducted as part of the investigation
of injuries from the DWH oil spill and as part of the mul-
tiyear Northern Gulf of Mexico Cetacean UME investigation
(Smith et al., 2017; Venn-Watson et al., 2015). For these sites
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with high exposures to hazardous chemicals, the lower survival
estimates from the VESOP model were driven by a high preva-
lence of multiple health abnormalities. The BBE, MSS, and SGE
sites were separated from the others by the hierarchical cluster-
ing (Figure 3), and all had relatively high prevalence for multiple
inflammation indices as well as other health problems. The BBE
and MSS populations clustered together in the highest clade;
both had a very high prevalence of lung disease and low cortisol,
conditions previously reported in association with exposure to
the DWH oil (Schwacke et al., 2014; Smith et al., 2017). Anemia
was the most prevalent index for SGE, a finding consistent with
previous analyses of this population and with high exposure to
PCBs (Schwacke et al., 2012).

The SJB population had the lowest survival rates and almost
no health abnormalities. Sampling in SJB was part of an
investigation into the 2005–2006 Florida Panhandle UME,
which was ultimately attributed to blooms of a harmful algae
(Karena brevis) and its neurotoxin, brevetoxin (Twiner et al.,
2012). Rather than health-related mortality risk, the low VESOP
survival estimate for SJB (0.88) was due to a low posterior base-
line survival (0.92). Two of the 27 dolphins from SJB had no
health abnormalities when sampled but later died in association
with the UME: their carcasses were recovered and stomach con-
tents were positive for brevetoxin. Five additional dolphins, also
with no health abnormalities, were not observed a year or more
after their assessment, but their carcasses were not recovered,
and they potentially perished as part of the UME. Investigation
of strandings during the UME showed dolphins in good nutri-
tional state, no evidence of infectious disease, and no consistent
gross or histological findings (Twiner et al., 2012). Mortalities
appeared to occur either acutely during the bloom or shortly
after the bloom due to the retention of K. brevis in the food web
(Reif et al., 2017). In either case, the risk of mortality appeared
to be related to brevetoxin exposure rather than a dolphin’s
underlying health state.

Although a high prevalence of eosinophilia (23%) was
reported from the SJB health assessments (Schwacke et al.,
2010), we found that all of the eosinophilia cases survived for
at least 2 years after health assessment, providing no evidence
that the eosinophilia increased near term (1- to 2-year) mortality
risk. Eosinophilia was also not included in the health indices for
the VESOP model because members of the VAP considered
elevated eosinophils, which is often associated with common
parasitic infections, less likely to be a strong predictor of sur-
vival. We applied the fitted VESOP model to SJB health data
with posterior baseline survival from the other training sites, and
the predicted survival was much higher (0.980), consistent with
the CMR average survival estimates for SJB in the years fol-
lowing the UME (2007–2013) (Appendix S4). Our conclusion
is that the SJB population was overall in good health and that
acute mortality events, such as those associated with harmful
algal blooms, cannot be predicted by monitoring health.

Estimated survival for the IRL population (0.94) was also
low as compared with SAR and CES populations. Increased
development and agricultural activity have led to environmen-
tal degradation in the IRL, including altered water quality and
decreased sea grass habitat (Reif et al., 2017). The IRL popula-

tion experienced 3 UMEs in 2001, 2008, and 2013 (Bossart et al.,
2017). The specific causes of the UMEs were not determined,
but ecological factors, such as poor water quality and habitat
degradation, were believed to contribute. Although the recorded
UMEs did not overlap with the health sampling used for our
analyses, these same ecological factors certainly could be a
chronic stressor for dolphin health in the IRL and may underlie
our findings of slightly higher prevalence of metabolic abnor-
malities for IRL dolphins (low BMI, low cholesterol) (Figure 3)
and somewhat lower survival.

Actual mortality for these populations cannot be directly
measured because carcasses often sink, drift, or are con-
sumed by scavengers (Moore et al., 2020), but open CMR
models based on sighting histories from photo-ID data are cur-
rently a standard approach for estimating survival for dolphins
and other cetacean populations. We found strong correla-
tion between CMR and VESOP population survival estimates
(r = 0.99), although the VESOP estimates were consistently
higher (Appendix S2). Standard CMR models estimate appar-
ent survival because an animal’s disappearance due to mortality
cannot be readily distinguished from a disappearance due to
emigration from the survey area. It is possible that emigration
created a downward bias in the CMR estimates, but we believe
any such bias is likely low because we took specific measures to
minimize it by mitigating any influence of transient animals.

Alternatively, there could have been a selection bias for
the health assessment subjects in some instances, resulting in
healthier dolphins being selected for sampling and creating an
upward bias in the VESOP estimates. This alternative is sup-
ported by the fact that the observed survival of the dolphins
sampled for health assessment was also higher than survival
estimates derived from the application of CMR analyses to the
broader photo-ID catalogs (which ranged from around 500 to
over 2000 individual dolphins). Although protocols for sam-
pling were consistent across studies, the sampling strategy for
health assessments varied to some degree across sites and within
some sites over time. In some SAR sampling years, younger dol-
phins believed to be on the verge of becoming independent
from their mother were targeted to obtain basic life-history and
health data while they were still identifiable through association
with their mother and to mark them for future photo-ID study
following separation. In the IRL, visibly emaciated dolphins or
individuals with labored breathing were avoided, as were dol-
phins believed to be over 25 years old. This selection of younger
dolphins could bias sampling toward healthier individuals, as
could avoidance of visibly ill individuals.

There could be additional unconscious bias in the selec-
tion of subjects. Groups of dolphins (2–4 individuals) versus
single individuals were often targeted for efficiency of the
health assessment sampling. It is possible that compromised
dolphins may exhibit “sickness behaviors” that lead to social
isolation (Lopes, 2014), either self-imposed to avoid aggres-
sion from conspecifics or because conspecifics purposely avoid
sick individuals. In this case, compromised individuals may
be less likely to be sampled, and this bias would be more
prominent for populations where there is a high prevalence of
disease. If the goal of future health assessments is to derive a
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survival estimate for the population, then these potential biases
should be further explored and considered in developing the
sampling design. Measuring health indices with remote sam-
pling (e.g., sampling of blubber, blow, or feces) would greatly
enhance researchers’ ability to randomly select subjects and sup-
port collection of larger sample sizes due to the lower effort,
risk, and cost. Research to develop methods to remotely collect
blood from free-swimming cetaceans is also being pursued, and
our findings support the need for such technological advance-
ments. Such remote sampling approaches would expand the
applicability of health assessment and VESOP models to other
cetacean species for which hands-on health assessments are
infeasible.

Our identification of a quantitative link between health
and population survival is significant. The ability to estimate
population survival rate from health measures, particularly those
collected at a single point in time, provides a potential proac-
tive approach for predicting survival rate to supplement current
monitoring approaches. In addition to more timely detection
of a decline, changes in health may suggest underlying factors
when declines are detected. For example, a high prevalence of
low cortisol, which we found in the BBE and MSS populations,
is a relatively specific indicator of oil exposure. Aside from the
implications for improved monitoring, the VESOP model sup-
ports an essential, and currently lacking, component in unified
frameworks for assessing or predicting the effects of nonlethal
effects of stressors on wildlife populations, such as popula-
tion consequences of disturbance (PCoD) conceptual models
(Pirotta et al., 2018). The PCoD framework, which links dis-
turbance to physiological or behavioral responses, changes in
health, and ultimately to population vital rates, has been widely
applied for assessment of the nonlethal effects of disturbance,
primarily noise disturbance, on marine mammals. However,
implementations of PCoD models to date focus largely on body
condition as the health indicator of interest and rely primar-
ily on bioenergetic modeling and assumed relationships with
reproduction or expert elicitation to estimate the level of energy
below which starvation causes mortality (reviewed by Pirotta
et al. [2018]). In contrast, the VESOP model provides a direct
connection between health measures and both individual- and
population-level survival, reducing the assumptions that must
be made to determine the population consequences of anthro-
pogenic stressors; this connection will greatly facilitate effective
conservation, management, and regulatory decisions.
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